Metamath Proof Explorer


Theorem wl-luk-ax3

Description: ax-3 proved from Lukasiewicz's axioms. (Contributed by Wolf Lammen, 17-Dec-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion wl-luk-ax3 ¬ φ ¬ ψ ψ φ

Proof

Step Hyp Ref Expression
1 ax-luk3 ψ ¬ ψ φ
2 ax-luk1 ¬ φ ¬ ψ ¬ ψ φ ¬ φ φ
3 1 2 wl-luk-imtrid ¬ φ ¬ ψ ψ ¬ φ φ
4 ax-luk2 ¬ φ φ φ
5 3 4 wl-luk-imtrdi ¬ φ ¬ ψ ψ φ