Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Wolf Lammen 1. Bootstrapping wl-luk-ax3  
				
		 
		
			
		 
		Description:   ax-3  proved from Lukasiewicz's axioms.  (Contributed by Wolf Lammen , 17-Dec-2018)   (New usage is discouraged.) 
     (Proof modification is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					wl-luk-ax3 ⊢   ( ( ¬  𝜑   →  ¬  𝜓  )  →  ( 𝜓   →  𝜑  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							ax-luk3 ⊢  ( 𝜓   →  ( ¬  𝜓   →  𝜑  ) )  
						
							2 
								
							 
							ax-luk1 ⊢  ( ( ¬  𝜑   →  ¬  𝜓  )  →  ( ( ¬  𝜓   →  𝜑  )  →  ( ¬  𝜑   →  𝜑  ) ) )  
						
							3 
								1  2 
							 
							wl-luk-imtrid ⊢  ( ( ¬  𝜑   →  ¬  𝜓  )  →  ( 𝜓   →  ( ¬  𝜑   →  𝜑  ) ) )  
						
							4 
								
							 
							ax-luk2 ⊢  ( ( ¬  𝜑   →  𝜑  )  →  𝜑  )  
						
							5 
								3  4 
							 
							wl-luk-imtrdi ⊢  ( ( ¬  𝜑   →  ¬  𝜓  )  →  ( 𝜓   →  𝜑  ) )