Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Wolf Lammen
1. Bootstrapping
wl-luk-ax3
Metamath Proof Explorer
Description: ax-3 proved from Lukasiewicz's axioms. (Contributed by Wolf Lammen , 17-Dec-2018) (New usage is discouraged.)
(Proof modification is discouraged.)
Ref
Expression
Assertion
wl-luk-ax3
⊢ ( ( ¬ 𝜑 → ¬ 𝜓 ) → ( 𝜓 → 𝜑 ) )
Proof
Step
Hyp
Ref
Expression
1
ax-luk3
⊢ ( 𝜓 → ( ¬ 𝜓 → 𝜑 ) )
2
ax-luk1
⊢ ( ( ¬ 𝜑 → ¬ 𝜓 ) → ( ( ¬ 𝜓 → 𝜑 ) → ( ¬ 𝜑 → 𝜑 ) ) )
3
1 2
wl-luk-imtrid
⊢ ( ( ¬ 𝜑 → ¬ 𝜓 ) → ( 𝜓 → ( ¬ 𝜑 → 𝜑 ) ) )
4
ax-luk2
⊢ ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 )
5
3 4
wl-luk-imtrdi
⊢ ( ( ¬ 𝜑 → ¬ 𝜓 ) → ( 𝜓 → 𝜑 ) )