Metamath Proof Explorer


Theorem wl-luk-ax3

Description: ax-3 proved from Lukasiewicz's axioms. (Contributed by Wolf Lammen, 17-Dec-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion wl-luk-ax3 ( ( ¬ 𝜑 → ¬ 𝜓 ) → ( 𝜓𝜑 ) )

Proof

Step Hyp Ref Expression
1 ax-luk3 ( 𝜓 → ( ¬ 𝜓𝜑 ) )
2 ax-luk1 ( ( ¬ 𝜑 → ¬ 𝜓 ) → ( ( ¬ 𝜓𝜑 ) → ( ¬ 𝜑𝜑 ) ) )
3 1 2 wl-luk-imtrid ( ( ¬ 𝜑 → ¬ 𝜓 ) → ( 𝜓 → ( ¬ 𝜑𝜑 ) ) )
4 ax-luk2 ( ( ¬ 𝜑𝜑 ) → 𝜑 )
5 3 4 wl-luk-imtrdi ( ( ¬ 𝜑 → ¬ 𝜓 ) → ( 𝜓𝜑 ) )