Metamath Proof Explorer


Theorem wl-luk-con4i

Description: Inference rule. Copy of con4i with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis wl-luk-con4i.1 ¬ φ ¬ ψ
Assertion wl-luk-con4i ψ φ

Proof

Step Hyp Ref Expression
1 wl-luk-con4i.1 ¬ φ ¬ ψ
2 ax-luk3 ψ ¬ ψ φ
3 1 2 wl-luk-imtrid ψ ¬ φ φ
4 3 wl-luk-pm2.18d ψ φ