Metamath Proof Explorer


Theorem wl-mps

Description: Replacing a nested consequent. A sort of modus ponens in antecedent position. (Contributed by Wolf Lammen, 20-Sep-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses wl-mps.1 φ ψ χ
wl-mps.2 φ χ θ
Assertion wl-mps φ ψ θ

Proof

Step Hyp Ref Expression
1 wl-mps.1 φ ψ χ
2 wl-mps.2 φ χ θ
3 1 a2i φ ψ φ χ
4 3 2 syl φ ψ θ