Metamath Proof Explorer


Theorem wlklnwwlkn

Description: A walk of length N as word corresponds to a walk with length N in a simple pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018) (Revised by AV, 12-Apr-2021)

Ref Expression
Assertion wlklnwwlkn GUSHGraphffWalksGPf=NPNWWalksNG

Proof

Step Hyp Ref Expression
1 uspgrupgr GUSHGraphGUPGraph
2 wlklnwwlkln1 GUPGraphfWalksGPf=NPNWWalksNG
3 1 2 syl GUSHGraphfWalksGPf=NPNWWalksNG
4 3 exlimdv GUSHGraphffWalksGPf=NPNWWalksNG
5 wlklnwwlkln2 GUSHGraphPNWWalksNGffWalksGPf=N
6 4 5 impbid GUSHGraphffWalksGPf=NPNWWalksNG