| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uspgrupgr | ⊢ ( 𝐺  ∈  USPGraph  →  𝐺  ∈  UPGraph ) | 
						
							| 2 |  | wlklnwwlkln1 | ⊢ ( 𝐺  ∈  UPGraph  →  ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝑓 )  =  𝑁 )  →  𝑃  ∈  ( 𝑁  WWalksN  𝐺 ) ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐺  ∈  USPGraph  →  ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝑓 )  =  𝑁 )  →  𝑃  ∈  ( 𝑁  WWalksN  𝐺 ) ) ) | 
						
							| 4 | 3 | exlimdv | ⊢ ( 𝐺  ∈  USPGraph  →  ( ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝑓 )  =  𝑁 )  →  𝑃  ∈  ( 𝑁  WWalksN  𝐺 ) ) ) | 
						
							| 5 |  | wlklnwwlkln2 | ⊢ ( 𝐺  ∈  USPGraph  →  ( 𝑃  ∈  ( 𝑁  WWalksN  𝐺 )  →  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝑓 )  =  𝑁 ) ) ) | 
						
							| 6 | 4 5 | impbid | ⊢ ( 𝐺  ∈  USPGraph  →  ( ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝑓 )  =  𝑁 )  ↔  𝑃  ∈  ( 𝑁  WWalksN  𝐺 ) ) ) |