Metamath Proof Explorer


Theorem wrdv

Description: A word over an alphabet is a word over the universal class. (Contributed by AV, 8-Feb-2021) (Proof shortened by JJ, 18-Nov-2022)

Ref Expression
Assertion wrdv WWordVWWordV

Proof

Step Hyp Ref Expression
1 ssv VV
2 sswrd VVWordVWordV
3 1 2 ax-mp WordVWordV
4 3 sseli WWordVWWordV