Metamath Proof Explorer


Theorem wsuceq2

Description: Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018)

Ref Expression
Assertion wsuceq2 A=BwsucRAX=wsucRBX

Proof

Step Hyp Ref Expression
1 eqid R=R
2 eqid X=X
3 wsuceq123 R=RA=BX=XwsucRAX=wsucRBX
4 1 2 3 mp3an13 A=BwsucRAX=wsucRBX