Metamath Proof Explorer


Theorem wsuceq3

Description: Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018)

Ref Expression
Assertion wsuceq3 X=YwsucRAX=wsucRAY

Proof

Step Hyp Ref Expression
1 eqid R=R
2 eqid A=A
3 wsuceq123 R=RA=AX=YwsucRAX=wsucRAY
4 1 2 3 mp3an12 X=YwsucRAX=wsucRAY