Description: Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | wsuceq3 | ⊢ ( 𝑋 = 𝑌 → wsuc ( 𝑅 , 𝐴 , 𝑋 ) = wsuc ( 𝑅 , 𝐴 , 𝑌 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ 𝑅 = 𝑅 | |
2 | eqid | ⊢ 𝐴 = 𝐴 | |
3 | wsuceq123 | ⊢ ( ( 𝑅 = 𝑅 ∧ 𝐴 = 𝐴 ∧ 𝑋 = 𝑌 ) → wsuc ( 𝑅 , 𝐴 , 𝑋 ) = wsuc ( 𝑅 , 𝐴 , 𝑌 ) ) | |
4 | 1 2 3 | mp3an12 | ⊢ ( 𝑋 = 𝑌 → wsuc ( 𝑅 , 𝐴 , 𝑋 ) = wsuc ( 𝑅 , 𝐴 , 𝑌 ) ) |