Metamath Proof Explorer


Theorem wsuceq3

Description: Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018)

Ref Expression
Assertion wsuceq3 ( 𝑋 = 𝑌 → wsuc ( 𝑅 , 𝐴 , 𝑋 ) = wsuc ( 𝑅 , 𝐴 , 𝑌 ) )

Proof

Step Hyp Ref Expression
1 eqid 𝑅 = 𝑅
2 eqid 𝐴 = 𝐴
3 wsuceq123 ( ( 𝑅 = 𝑅𝐴 = 𝐴𝑋 = 𝑌 ) → wsuc ( 𝑅 , 𝐴 , 𝑋 ) = wsuc ( 𝑅 , 𝐴 , 𝑌 ) )
4 1 2 3 mp3an12 ( 𝑋 = 𝑌 → wsuc ( 𝑅 , 𝐴 , 𝑋 ) = wsuc ( 𝑅 , 𝐴 , 𝑌 ) )