Metamath Proof Explorer


Theorem nfwsuc

Description: Bound-variable hypothesis builder for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018) (Proof shortened by AV, 10-Oct-2021)

Ref Expression
Hypotheses nfwsuc.1 𝑥 𝑅
nfwsuc.2 𝑥 𝐴
nfwsuc.3 𝑥 𝑋
Assertion nfwsuc 𝑥 wsuc ( 𝑅 , 𝐴 , 𝑋 )

Proof

Step Hyp Ref Expression
1 nfwsuc.1 𝑥 𝑅
2 nfwsuc.2 𝑥 𝐴
3 nfwsuc.3 𝑥 𝑋
4 df-wsuc wsuc ( 𝑅 , 𝐴 , 𝑋 ) = inf ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 )
5 1 nfcnv 𝑥 𝑅
6 5 2 3 nfpred 𝑥 Pred ( 𝑅 , 𝐴 , 𝑋 )
7 6 2 1 nfinf 𝑥 inf ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 )
8 4 7 nfcxfr 𝑥 wsuc ( 𝑅 , 𝐴 , 𝑋 )