Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐵 ) |
2 |
|
simpl |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ) → 𝑅 = 𝑆 ) |
3 |
1 1 2
|
infeq123d |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ) → inf ( 𝐴 , 𝐴 , 𝑅 ) = inf ( 𝐵 , 𝐵 , 𝑆 ) ) |
4 |
3
|
neeq2d |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ) → ( 𝑥 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ↔ 𝑥 ≠ inf ( 𝐵 , 𝐵 , 𝑆 ) ) ) |
5 |
|
equid |
⊢ 𝑥 = 𝑥 |
6 |
|
predeq123 |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑥 = 𝑥 ) → Pred ( 𝑅 , 𝐴 , 𝑥 ) = Pred ( 𝑆 , 𝐵 , 𝑥 ) ) |
7 |
5 6
|
mp3an3 |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ) → Pred ( 𝑅 , 𝐴 , 𝑥 ) = Pred ( 𝑆 , 𝐵 , 𝑥 ) ) |
8 |
7 1 2
|
supeq123d |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ) → sup ( Pred ( 𝑅 , 𝐴 , 𝑥 ) , 𝐴 , 𝑅 ) = sup ( Pred ( 𝑆 , 𝐵 , 𝑥 ) , 𝐵 , 𝑆 ) ) |
9 |
8
|
eqeq2d |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ) → ( 𝑥 = sup ( Pred ( 𝑅 , 𝐴 , 𝑥 ) , 𝐴 , 𝑅 ) ↔ 𝑥 = sup ( Pred ( 𝑆 , 𝐵 , 𝑥 ) , 𝐵 , 𝑆 ) ) ) |
10 |
4 9
|
anbi12d |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ) → ( ( 𝑥 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ∧ 𝑥 = sup ( Pred ( 𝑅 , 𝐴 , 𝑥 ) , 𝐴 , 𝑅 ) ) ↔ ( 𝑥 ≠ inf ( 𝐵 , 𝐵 , 𝑆 ) ∧ 𝑥 = sup ( Pred ( 𝑆 , 𝐵 , 𝑥 ) , 𝐵 , 𝑆 ) ) ) ) |
11 |
1 10
|
rabeqbidv |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ) → { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ∧ 𝑥 = sup ( Pred ( 𝑅 , 𝐴 , 𝑥 ) , 𝐴 , 𝑅 ) ) } = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ≠ inf ( 𝐵 , 𝐵 , 𝑆 ) ∧ 𝑥 = sup ( Pred ( 𝑆 , 𝐵 , 𝑥 ) , 𝐵 , 𝑆 ) ) } ) |
12 |
|
df-wlim |
⊢ WLim ( 𝑅 , 𝐴 ) = { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ∧ 𝑥 = sup ( Pred ( 𝑅 , 𝐴 , 𝑥 ) , 𝐴 , 𝑅 ) ) } |
13 |
|
df-wlim |
⊢ WLim ( 𝑆 , 𝐵 ) = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ≠ inf ( 𝐵 , 𝐵 , 𝑆 ) ∧ 𝑥 = sup ( Pred ( 𝑆 , 𝐵 , 𝑥 ) , 𝐵 , 𝑆 ) ) } |
14 |
11 12 13
|
3eqtr4g |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ) → WLim ( 𝑅 , 𝐴 ) = WLim ( 𝑆 , 𝐵 ) ) |