| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( R = S /\ A = B ) -> A = B ) |
| 2 |
|
simpl |
|- ( ( R = S /\ A = B ) -> R = S ) |
| 3 |
1 1 2
|
infeq123d |
|- ( ( R = S /\ A = B ) -> inf ( A , A , R ) = inf ( B , B , S ) ) |
| 4 |
3
|
neeq2d |
|- ( ( R = S /\ A = B ) -> ( x =/= inf ( A , A , R ) <-> x =/= inf ( B , B , S ) ) ) |
| 5 |
|
equid |
|- x = x |
| 6 |
|
predeq123 |
|- ( ( R = S /\ A = B /\ x = x ) -> Pred ( R , A , x ) = Pred ( S , B , x ) ) |
| 7 |
5 6
|
mp3an3 |
|- ( ( R = S /\ A = B ) -> Pred ( R , A , x ) = Pred ( S , B , x ) ) |
| 8 |
7 1 2
|
supeq123d |
|- ( ( R = S /\ A = B ) -> sup ( Pred ( R , A , x ) , A , R ) = sup ( Pred ( S , B , x ) , B , S ) ) |
| 9 |
8
|
eqeq2d |
|- ( ( R = S /\ A = B ) -> ( x = sup ( Pred ( R , A , x ) , A , R ) <-> x = sup ( Pred ( S , B , x ) , B , S ) ) ) |
| 10 |
4 9
|
anbi12d |
|- ( ( R = S /\ A = B ) -> ( ( x =/= inf ( A , A , R ) /\ x = sup ( Pred ( R , A , x ) , A , R ) ) <-> ( x =/= inf ( B , B , S ) /\ x = sup ( Pred ( S , B , x ) , B , S ) ) ) ) |
| 11 |
1 10
|
rabeqbidv |
|- ( ( R = S /\ A = B ) -> { x e. A | ( x =/= inf ( A , A , R ) /\ x = sup ( Pred ( R , A , x ) , A , R ) ) } = { x e. B | ( x =/= inf ( B , B , S ) /\ x = sup ( Pred ( S , B , x ) , B , S ) ) } ) |
| 12 |
|
df-wlim |
|- WLim ( R , A ) = { x e. A | ( x =/= inf ( A , A , R ) /\ x = sup ( Pred ( R , A , x ) , A , R ) ) } |
| 13 |
|
df-wlim |
|- WLim ( S , B ) = { x e. B | ( x =/= inf ( B , B , S ) /\ x = sup ( Pred ( S , B , x ) , B , S ) ) } |
| 14 |
11 12 13
|
3eqtr4g |
|- ( ( R = S /\ A = B ) -> WLim ( R , A ) = WLim ( S , B ) ) |