| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  |-  ( ( R = S /\ A = B ) -> A = B ) | 
						
							| 2 |  | simpl |  |-  ( ( R = S /\ A = B ) -> R = S ) | 
						
							| 3 | 1 1 2 | infeq123d |  |-  ( ( R = S /\ A = B ) -> inf ( A , A , R ) = inf ( B , B , S ) ) | 
						
							| 4 | 3 | neeq2d |  |-  ( ( R = S /\ A = B ) -> ( x =/= inf ( A , A , R ) <-> x =/= inf ( B , B , S ) ) ) | 
						
							| 5 |  | equid |  |-  x = x | 
						
							| 6 |  | predeq123 |  |-  ( ( R = S /\ A = B /\ x = x ) -> Pred ( R , A , x ) = Pred ( S , B , x ) ) | 
						
							| 7 | 5 6 | mp3an3 |  |-  ( ( R = S /\ A = B ) -> Pred ( R , A , x ) = Pred ( S , B , x ) ) | 
						
							| 8 | 7 1 2 | supeq123d |  |-  ( ( R = S /\ A = B ) -> sup ( Pred ( R , A , x ) , A , R ) = sup ( Pred ( S , B , x ) , B , S ) ) | 
						
							| 9 | 8 | eqeq2d |  |-  ( ( R = S /\ A = B ) -> ( x = sup ( Pred ( R , A , x ) , A , R ) <-> x = sup ( Pred ( S , B , x ) , B , S ) ) ) | 
						
							| 10 | 4 9 | anbi12d |  |-  ( ( R = S /\ A = B ) -> ( ( x =/= inf ( A , A , R ) /\ x = sup ( Pred ( R , A , x ) , A , R ) ) <-> ( x =/= inf ( B , B , S ) /\ x = sup ( Pred ( S , B , x ) , B , S ) ) ) ) | 
						
							| 11 | 1 10 | rabeqbidv |  |-  ( ( R = S /\ A = B ) -> { x e. A | ( x =/= inf ( A , A , R ) /\ x = sup ( Pred ( R , A , x ) , A , R ) ) } = { x e. B | ( x =/= inf ( B , B , S ) /\ x = sup ( Pred ( S , B , x ) , B , S ) ) } ) | 
						
							| 12 |  | df-wlim |  |-  WLim ( R , A ) = { x e. A | ( x =/= inf ( A , A , R ) /\ x = sup ( Pred ( R , A , x ) , A , R ) ) } | 
						
							| 13 |  | df-wlim |  |-  WLim ( S , B ) = { x e. B | ( x =/= inf ( B , B , S ) /\ x = sup ( Pred ( S , B , x ) , B , S ) ) } | 
						
							| 14 | 11 12 13 | 3eqtr4g |  |-  ( ( R = S /\ A = B ) -> WLim ( R , A ) = WLim ( S , B ) ) |