Metamath Proof Explorer


Theorem wlimeq12

Description: Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018) (Proof shortened by AV, 10-Oct-2021)

Ref Expression
Assertion wlimeq12 R = S A = B WLim R A = WLim S B

Proof

Step Hyp Ref Expression
1 simpr R = S A = B A = B
2 simpl R = S A = B R = S
3 1 1 2 infeq123d R = S A = B sup A A R = sup B B S
4 3 neeq2d R = S A = B x sup A A R x sup B B S
5 equid x = x
6 predeq123 R = S A = B x = x Pred R A x = Pred S B x
7 5 6 mp3an3 R = S A = B Pred R A x = Pred S B x
8 7 1 2 supeq123d R = S A = B sup Pred R A x A R = sup Pred S B x B S
9 8 eqeq2d R = S A = B x = sup Pred R A x A R x = sup Pred S B x B S
10 4 9 anbi12d R = S A = B x sup A A R x = sup Pred R A x A R x sup B B S x = sup Pred S B x B S
11 1 10 rabeqbidv R = S A = B x A | x sup A A R x = sup Pred R A x A R = x B | x sup B B S x = sup Pred S B x B S
12 df-wlim WLim R A = x A | x sup A A R x = sup Pred R A x A R
13 df-wlim WLim S B = x B | x sup B B S x = sup Pred S B x B S
14 11 12 13 3eqtr4g R = S A = B WLim R A = WLim S B