Metamath Proof Explorer


Theorem infeq123d

Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020)

Ref Expression
Hypotheses infeq123d.a φA=D
infeq123d.b φB=E
infeq123d.c φC=F
Assertion infeq123d φsupABC=supDEF

Proof

Step Hyp Ref Expression
1 infeq123d.a φA=D
2 infeq123d.b φB=E
3 infeq123d.c φC=F
4 3 cnveqd φC-1=F-1
5 1 2 4 supeq123d φsupABC-1=supDEF-1
6 df-inf supABC=supABC-1
7 df-inf supDEF=supDEF-1
8 5 6 7 3eqtr4g φsupABC=supDEF