Metamath Proof Explorer


Theorem supeq123d

Description: Equality deduction for supremum. (Contributed by Stefan O'Rear, 20-Jan-2015)

Ref Expression
Hypotheses supeq123d.a φA=D
supeq123d.b φB=E
supeq123d.c φC=F
Assertion supeq123d φsupABC=supDEF

Proof

Step Hyp Ref Expression
1 supeq123d.a φA=D
2 supeq123d.b φB=E
3 supeq123d.c φC=F
4 3 breqd φxCyxFy
5 4 notbid φ¬xCy¬xFy
6 1 5 raleqbidv φyA¬xCyyD¬xFy
7 3 breqd φyCxyFx
8 3 breqd φyCzyFz
9 1 8 rexeqbidv φzAyCzzDyFz
10 7 9 imbi12d φyCxzAyCzyFxzDyFz
11 2 10 raleqbidv φyByCxzAyCzyEyFxzDyFz
12 6 11 anbi12d φyA¬xCyyByCxzAyCzyD¬xFyyEyFxzDyFz
13 2 12 rabeqbidv φxB|yA¬xCyyByCxzAyCz=xE|yD¬xFyyEyFxzDyFz
14 13 unieqd φxB|yA¬xCyyByCxzAyCz=xE|yD¬xFyyEyFxzDyFz
15 df-sup supABC=xB|yA¬xCyyByCxzAyCz
16 df-sup supDEF=xE|yD¬xFyyEyFxzDyFz
17 14 15 16 3eqtr4g φsupABC=supDEF