| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supeq123d.a |
⊢ ( 𝜑 → 𝐴 = 𝐷 ) |
| 2 |
|
supeq123d.b |
⊢ ( 𝜑 → 𝐵 = 𝐸 ) |
| 3 |
|
supeq123d.c |
⊢ ( 𝜑 → 𝐶 = 𝐹 ) |
| 4 |
3
|
breqd |
⊢ ( 𝜑 → ( 𝑥 𝐶 𝑦 ↔ 𝑥 𝐹 𝑦 ) ) |
| 5 |
4
|
notbid |
⊢ ( 𝜑 → ( ¬ 𝑥 𝐶 𝑦 ↔ ¬ 𝑥 𝐹 𝑦 ) ) |
| 6 |
1 5
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝐶 𝑦 ↔ ∀ 𝑦 ∈ 𝐷 ¬ 𝑥 𝐹 𝑦 ) ) |
| 7 |
3
|
breqd |
⊢ ( 𝜑 → ( 𝑦 𝐶 𝑥 ↔ 𝑦 𝐹 𝑥 ) ) |
| 8 |
3
|
breqd |
⊢ ( 𝜑 → ( 𝑦 𝐶 𝑧 ↔ 𝑦 𝐹 𝑧 ) ) |
| 9 |
1 8
|
rexeqbidv |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ 𝐴 𝑦 𝐶 𝑧 ↔ ∃ 𝑧 ∈ 𝐷 𝑦 𝐹 𝑧 ) ) |
| 10 |
7 9
|
imbi12d |
⊢ ( 𝜑 → ( ( 𝑦 𝐶 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝐶 𝑧 ) ↔ ( 𝑦 𝐹 𝑥 → ∃ 𝑧 ∈ 𝐷 𝑦 𝐹 𝑧 ) ) ) |
| 11 |
2 10
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝐶 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝐶 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐸 ( 𝑦 𝐹 𝑥 → ∃ 𝑧 ∈ 𝐷 𝑦 𝐹 𝑧 ) ) ) |
| 12 |
6 11
|
anbi12d |
⊢ ( 𝜑 → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝐶 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝐶 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝐶 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝐷 ¬ 𝑥 𝐹 𝑦 ∧ ∀ 𝑦 ∈ 𝐸 ( 𝑦 𝐹 𝑥 → ∃ 𝑧 ∈ 𝐷 𝑦 𝐹 𝑧 ) ) ) ) |
| 13 |
2 12
|
rabeqbidv |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐵 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝐶 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝐶 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝐶 𝑧 ) ) } = { 𝑥 ∈ 𝐸 ∣ ( ∀ 𝑦 ∈ 𝐷 ¬ 𝑥 𝐹 𝑦 ∧ ∀ 𝑦 ∈ 𝐸 ( 𝑦 𝐹 𝑥 → ∃ 𝑧 ∈ 𝐷 𝑦 𝐹 𝑧 ) ) } ) |
| 14 |
13
|
unieqd |
⊢ ( 𝜑 → ∪ { 𝑥 ∈ 𝐵 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝐶 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝐶 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝐶 𝑧 ) ) } = ∪ { 𝑥 ∈ 𝐸 ∣ ( ∀ 𝑦 ∈ 𝐷 ¬ 𝑥 𝐹 𝑦 ∧ ∀ 𝑦 ∈ 𝐸 ( 𝑦 𝐹 𝑥 → ∃ 𝑧 ∈ 𝐷 𝑦 𝐹 𝑧 ) ) } ) |
| 15 |
|
df-sup |
⊢ sup ( 𝐴 , 𝐵 , 𝐶 ) = ∪ { 𝑥 ∈ 𝐵 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝐶 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝐶 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝐶 𝑧 ) ) } |
| 16 |
|
df-sup |
⊢ sup ( 𝐷 , 𝐸 , 𝐹 ) = ∪ { 𝑥 ∈ 𝐸 ∣ ( ∀ 𝑦 ∈ 𝐷 ¬ 𝑥 𝐹 𝑦 ∧ ∀ 𝑦 ∈ 𝐸 ( 𝑦 𝐹 𝑥 → ∃ 𝑧 ∈ 𝐷 𝑦 𝐹 𝑧 ) ) } |
| 17 |
14 15 16
|
3eqtr4g |
⊢ ( 𝜑 → sup ( 𝐴 , 𝐵 , 𝐶 ) = sup ( 𝐷 , 𝐸 , 𝐹 ) ) |