Metamath Proof Explorer


Theorem supeq123d

Description: Equality deduction for supremum. (Contributed by Stefan O'Rear, 20-Jan-2015)

Ref Expression
Hypotheses supeq123d.a ( 𝜑𝐴 = 𝐷 )
supeq123d.b ( 𝜑𝐵 = 𝐸 )
supeq123d.c ( 𝜑𝐶 = 𝐹 )
Assertion supeq123d ( 𝜑 → sup ( 𝐴 , 𝐵 , 𝐶 ) = sup ( 𝐷 , 𝐸 , 𝐹 ) )

Proof

Step Hyp Ref Expression
1 supeq123d.a ( 𝜑𝐴 = 𝐷 )
2 supeq123d.b ( 𝜑𝐵 = 𝐸 )
3 supeq123d.c ( 𝜑𝐶 = 𝐹 )
4 3 breqd ( 𝜑 → ( 𝑥 𝐶 𝑦𝑥 𝐹 𝑦 ) )
5 4 notbid ( 𝜑 → ( ¬ 𝑥 𝐶 𝑦 ↔ ¬ 𝑥 𝐹 𝑦 ) )
6 1 5 raleqbidv ( 𝜑 → ( ∀ 𝑦𝐴 ¬ 𝑥 𝐶 𝑦 ↔ ∀ 𝑦𝐷 ¬ 𝑥 𝐹 𝑦 ) )
7 3 breqd ( 𝜑 → ( 𝑦 𝐶 𝑥𝑦 𝐹 𝑥 ) )
8 3 breqd ( 𝜑 → ( 𝑦 𝐶 𝑧𝑦 𝐹 𝑧 ) )
9 1 8 rexeqbidv ( 𝜑 → ( ∃ 𝑧𝐴 𝑦 𝐶 𝑧 ↔ ∃ 𝑧𝐷 𝑦 𝐹 𝑧 ) )
10 7 9 imbi12d ( 𝜑 → ( ( 𝑦 𝐶 𝑥 → ∃ 𝑧𝐴 𝑦 𝐶 𝑧 ) ↔ ( 𝑦 𝐹 𝑥 → ∃ 𝑧𝐷 𝑦 𝐹 𝑧 ) ) )
11 2 10 raleqbidv ( 𝜑 → ( ∀ 𝑦𝐵 ( 𝑦 𝐶 𝑥 → ∃ 𝑧𝐴 𝑦 𝐶 𝑧 ) ↔ ∀ 𝑦𝐸 ( 𝑦 𝐹 𝑥 → ∃ 𝑧𝐷 𝑦 𝐹 𝑧 ) ) )
12 6 11 anbi12d ( 𝜑 → ( ( ∀ 𝑦𝐴 ¬ 𝑥 𝐶 𝑦 ∧ ∀ 𝑦𝐵 ( 𝑦 𝐶 𝑥 → ∃ 𝑧𝐴 𝑦 𝐶 𝑧 ) ) ↔ ( ∀ 𝑦𝐷 ¬ 𝑥 𝐹 𝑦 ∧ ∀ 𝑦𝐸 ( 𝑦 𝐹 𝑥 → ∃ 𝑧𝐷 𝑦 𝐹 𝑧 ) ) ) )
13 2 12 rabeqbidv ( 𝜑 → { 𝑥𝐵 ∣ ( ∀ 𝑦𝐴 ¬ 𝑥 𝐶 𝑦 ∧ ∀ 𝑦𝐵 ( 𝑦 𝐶 𝑥 → ∃ 𝑧𝐴 𝑦 𝐶 𝑧 ) ) } = { 𝑥𝐸 ∣ ( ∀ 𝑦𝐷 ¬ 𝑥 𝐹 𝑦 ∧ ∀ 𝑦𝐸 ( 𝑦 𝐹 𝑥 → ∃ 𝑧𝐷 𝑦 𝐹 𝑧 ) ) } )
14 13 unieqd ( 𝜑 { 𝑥𝐵 ∣ ( ∀ 𝑦𝐴 ¬ 𝑥 𝐶 𝑦 ∧ ∀ 𝑦𝐵 ( 𝑦 𝐶 𝑥 → ∃ 𝑧𝐴 𝑦 𝐶 𝑧 ) ) } = { 𝑥𝐸 ∣ ( ∀ 𝑦𝐷 ¬ 𝑥 𝐹 𝑦 ∧ ∀ 𝑦𝐸 ( 𝑦 𝐹 𝑥 → ∃ 𝑧𝐷 𝑦 𝐹 𝑧 ) ) } )
15 df-sup sup ( 𝐴 , 𝐵 , 𝐶 ) = { 𝑥𝐵 ∣ ( ∀ 𝑦𝐴 ¬ 𝑥 𝐶 𝑦 ∧ ∀ 𝑦𝐵 ( 𝑦 𝐶 𝑥 → ∃ 𝑧𝐴 𝑦 𝐶 𝑧 ) ) }
16 df-sup sup ( 𝐷 , 𝐸 , 𝐹 ) = { 𝑥𝐸 ∣ ( ∀ 𝑦𝐷 ¬ 𝑥 𝐹 𝑦 ∧ ∀ 𝑦𝐸 ( 𝑦 𝐹 𝑥 → ∃ 𝑧𝐷 𝑦 𝐹 𝑧 ) ) }
17 14 15 16 3eqtr4g ( 𝜑 → sup ( 𝐴 , 𝐵 , 𝐶 ) = sup ( 𝐷 , 𝐸 , 𝐹 ) )