Metamath Proof Explorer


Theorem infeq123d

Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020)

Ref Expression
Hypotheses infeq123d.a
|- ( ph -> A = D )
infeq123d.b
|- ( ph -> B = E )
infeq123d.c
|- ( ph -> C = F )
Assertion infeq123d
|- ( ph -> inf ( A , B , C ) = inf ( D , E , F ) )

Proof

Step Hyp Ref Expression
1 infeq123d.a
 |-  ( ph -> A = D )
2 infeq123d.b
 |-  ( ph -> B = E )
3 infeq123d.c
 |-  ( ph -> C = F )
4 3 cnveqd
 |-  ( ph -> `' C = `' F )
5 1 2 4 supeq123d
 |-  ( ph -> sup ( A , B , `' C ) = sup ( D , E , `' F ) )
6 df-inf
 |-  inf ( A , B , C ) = sup ( A , B , `' C )
7 df-inf
 |-  inf ( D , E , F ) = sup ( D , E , `' F )
8 5 6 7 3eqtr4g
 |-  ( ph -> inf ( A , B , C ) = inf ( D , E , F ) )