Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infeq123d.a | |- ( ph -> A = D ) |
|
| infeq123d.b | |- ( ph -> B = E ) |
||
| infeq123d.c | |- ( ph -> C = F ) |
||
| Assertion | infeq123d | |- ( ph -> inf ( A , B , C ) = inf ( D , E , F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infeq123d.a | |- ( ph -> A = D ) |
|
| 2 | infeq123d.b | |- ( ph -> B = E ) |
|
| 3 | infeq123d.c | |- ( ph -> C = F ) |
|
| 4 | 3 | cnveqd | |- ( ph -> `' C = `' F ) |
| 5 | 1 2 4 | supeq123d | |- ( ph -> sup ( A , B , `' C ) = sup ( D , E , `' F ) ) |
| 6 | df-inf | |- inf ( A , B , C ) = sup ( A , B , `' C ) |
|
| 7 | df-inf | |- inf ( D , E , F ) = sup ( D , E , `' F ) |
|
| 8 | 5 6 7 | 3eqtr4g | |- ( ph -> inf ( A , B , C ) = inf ( D , E , F ) ) |