Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | infeq123d.a | ⊢ ( 𝜑 → 𝐴 = 𝐷 ) | |
infeq123d.b | ⊢ ( 𝜑 → 𝐵 = 𝐸 ) | ||
infeq123d.c | ⊢ ( 𝜑 → 𝐶 = 𝐹 ) | ||
Assertion | infeq123d | ⊢ ( 𝜑 → inf ( 𝐴 , 𝐵 , 𝐶 ) = inf ( 𝐷 , 𝐸 , 𝐹 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infeq123d.a | ⊢ ( 𝜑 → 𝐴 = 𝐷 ) | |
2 | infeq123d.b | ⊢ ( 𝜑 → 𝐵 = 𝐸 ) | |
3 | infeq123d.c | ⊢ ( 𝜑 → 𝐶 = 𝐹 ) | |
4 | 3 | cnveqd | ⊢ ( 𝜑 → ◡ 𝐶 = ◡ 𝐹 ) |
5 | 1 2 4 | supeq123d | ⊢ ( 𝜑 → sup ( 𝐴 , 𝐵 , ◡ 𝐶 ) = sup ( 𝐷 , 𝐸 , ◡ 𝐹 ) ) |
6 | df-inf | ⊢ inf ( 𝐴 , 𝐵 , 𝐶 ) = sup ( 𝐴 , 𝐵 , ◡ 𝐶 ) | |
7 | df-inf | ⊢ inf ( 𝐷 , 𝐸 , 𝐹 ) = sup ( 𝐷 , 𝐸 , ◡ 𝐹 ) | |
8 | 5 6 7 | 3eqtr4g | ⊢ ( 𝜑 → inf ( 𝐴 , 𝐵 , 𝐶 ) = inf ( 𝐷 , 𝐸 , 𝐹 ) ) |