Description: Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfinf.1 | |- F/_ x A |
|
| nfinf.2 | |- F/_ x B |
||
| nfinf.3 | |- F/_ x R |
||
| Assertion | nfinf | |- F/_ x inf ( A , B , R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfinf.1 | |- F/_ x A |
|
| 2 | nfinf.2 | |- F/_ x B |
|
| 3 | nfinf.3 | |- F/_ x R |
|
| 4 | df-inf | |- inf ( A , B , R ) = sup ( A , B , `' R ) |
|
| 5 | 3 | nfcnv | |- F/_ x `' R |
| 6 | 1 2 5 | nfsup | |- F/_ x sup ( A , B , `' R ) |
| 7 | 4 6 | nfcxfr | |- F/_ x inf ( A , B , R ) |