Metamath Proof Explorer


Theorem wlimeq1

Description: Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018)

Ref Expression
Assertion wlimeq1 R=SWLimRA=WLimSA

Proof

Step Hyp Ref Expression
1 eqid A=A
2 wlimeq12 R=SA=AWLimRA=WLimSA
3 1 2 mpan2 R=SWLimRA=WLimSA