Description: Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wlimeq1 | ⊢ ( 𝑅 = 𝑆 → WLim ( 𝑅 , 𝐴 ) = WLim ( 𝑆 , 𝐴 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | ⊢ 𝐴 = 𝐴 | |
| 2 | wlimeq12 | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐴 ) → WLim ( 𝑅 , 𝐴 ) = WLim ( 𝑆 , 𝐴 ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝑅 = 𝑆 → WLim ( 𝑅 , 𝐴 ) = WLim ( 𝑆 , 𝐴 ) ) |