Metamath Proof Explorer


Theorem wlimeq2

Description: Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018)

Ref Expression
Assertion wlimeq2 ( 𝐴 = 𝐵 → WLim ( 𝑅 , 𝐴 ) = WLim ( 𝑅 , 𝐵 ) )

Proof

Step Hyp Ref Expression
1 eqid 𝑅 = 𝑅
2 wlimeq12 ( ( 𝑅 = 𝑅𝐴 = 𝐵 ) → WLim ( 𝑅 , 𝐴 ) = WLim ( 𝑅 , 𝐵 ) )
3 1 2 mpan ( 𝐴 = 𝐵 → WLim ( 𝑅 , 𝐴 ) = WLim ( 𝑅 , 𝐵 ) )