Description: Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wlimeq2 | ⊢ ( 𝐴 = 𝐵 → WLim ( 𝑅 , 𝐴 ) = WLim ( 𝑅 , 𝐵 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | ⊢ 𝑅 = 𝑅 | |
| 2 | wlimeq12 | ⊢ ( ( 𝑅 = 𝑅 ∧ 𝐴 = 𝐵 ) → WLim ( 𝑅 , 𝐴 ) = WLim ( 𝑅 , 𝐵 ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 = 𝐵 → WLim ( 𝑅 , 𝐴 ) = WLim ( 𝑅 , 𝐵 ) ) |