| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfwlim.1 | ⊢ Ⅎ 𝑥 𝑅 | 
						
							| 2 |  | nfwlim.2 | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 3 |  | df-wlim | ⊢ WLim ( 𝑅 ,  𝐴 )  =  { 𝑦  ∈  𝐴  ∣  ( 𝑦  ≠  inf ( 𝐴 ,  𝐴 ,  𝑅 )  ∧  𝑦  =  sup ( Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ,  𝐴 ,  𝑅 ) ) } | 
						
							| 4 |  | nfcv | ⊢ Ⅎ 𝑥 𝑦 | 
						
							| 5 | 2 2 1 | nfinf | ⊢ Ⅎ 𝑥 inf ( 𝐴 ,  𝐴 ,  𝑅 ) | 
						
							| 6 | 4 5 | nfne | ⊢ Ⅎ 𝑥 𝑦  ≠  inf ( 𝐴 ,  𝐴 ,  𝑅 ) | 
						
							| 7 | 1 2 4 | nfpred | ⊢ Ⅎ 𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 ) | 
						
							| 8 | 7 2 1 | nfsup | ⊢ Ⅎ 𝑥 sup ( Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ,  𝐴 ,  𝑅 ) | 
						
							| 9 | 8 | nfeq2 | ⊢ Ⅎ 𝑥 𝑦  =  sup ( Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ,  𝐴 ,  𝑅 ) | 
						
							| 10 | 6 9 | nfan | ⊢ Ⅎ 𝑥 ( 𝑦  ≠  inf ( 𝐴 ,  𝐴 ,  𝑅 )  ∧  𝑦  =  sup ( Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ,  𝐴 ,  𝑅 ) ) | 
						
							| 11 | 10 2 | nfrabw | ⊢ Ⅎ 𝑥 { 𝑦  ∈  𝐴  ∣  ( 𝑦  ≠  inf ( 𝐴 ,  𝐴 ,  𝑅 )  ∧  𝑦  =  sup ( Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ,  𝐴 ,  𝑅 ) ) } | 
						
							| 12 | 3 11 | nfcxfr | ⊢ Ⅎ 𝑥 WLim ( 𝑅 ,  𝐴 ) |