Metamath Proof Explorer


Theorem nfrabw

Description: A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 13-Oct-2003) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses nfrabw.1 𝑥 𝜑
nfrabw.2 𝑥 𝐴
Assertion nfrabw 𝑥 { 𝑦𝐴𝜑 }

Proof

Step Hyp Ref Expression
1 nfrabw.1 𝑥 𝜑
2 nfrabw.2 𝑥 𝐴
3 df-rab { 𝑦𝐴𝜑 } = { 𝑦 ∣ ( 𝑦𝐴𝜑 ) }
4 nftru 𝑦
5 2 nfcri 𝑥 𝑦𝐴
6 5 a1i ( ⊤ → Ⅎ 𝑥 𝑦𝐴 )
7 1 a1i ( ⊤ → Ⅎ 𝑥 𝜑 )
8 6 7 nfand ( ⊤ → Ⅎ 𝑥 ( 𝑦𝐴𝜑 ) )
9 4 8 nfabdw ( ⊤ → 𝑥 { 𝑦 ∣ ( 𝑦𝐴𝜑 ) } )
10 9 mptru 𝑥 { 𝑦 ∣ ( 𝑦𝐴𝜑 ) }
11 3 10 nfcxfr 𝑥 { 𝑦𝐴𝜑 }