Metamath Proof Explorer


Theorem nfrabw

Description: A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 13-Oct-2003) Avoid ax-13 . (Revised by Gino Giotto, 10-Jan-2024) (Proof shortened by Wolf Lammen, 23-Nov-2024)

Ref Expression
Hypotheses nfrabw.1 xφ
nfrabw.2 _xA
Assertion nfrabw _xyA|φ

Proof

Step Hyp Ref Expression
1 nfrabw.1 xφ
2 nfrabw.2 _xA
3 df-rab yA|φ=y|yAφ
4 nftru y
5 2 nfcri xyA
6 5 1 nfan xyAφ
7 6 a1i xyAφ
8 4 7 nfabdw _xy|yAφ
9 8 mptru _xy|yAφ
10 3 9 nfcxfr _xyA|φ