Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
nfrabwOLD
Metamath Proof Explorer
Description: Obsolete version of nfrabw as of 23-Nov_2024. (Contributed by NM , 13-Oct-2003) (Revised by Gino Giotto , 10-Jan-2024)
(New usage is discouraged.) (Proof modification is discouraged.)
Ref
Expression
Hypotheses
nfrabw.1
⊢ Ⅎ 𝑥 𝜑
nfrabw.2
⊢ Ⅎ 𝑥 𝐴
Assertion
nfrabwOLD
⊢ Ⅎ 𝑥 { 𝑦 ∈ 𝐴 ∣ 𝜑 }
Proof
Step
Hyp
Ref
Expression
1
nfrabw.1
⊢ Ⅎ 𝑥 𝜑
2
nfrabw.2
⊢ Ⅎ 𝑥 𝐴
3
df-rab
⊢ { 𝑦 ∈ 𝐴 ∣ 𝜑 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) }
4
nftru
⊢ Ⅎ 𝑦 ⊤
5
2
nfcri
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴
6
5
a1i
⊢ ( ⊤ → Ⅎ 𝑥 𝑦 ∈ 𝐴 )
7
1
a1i
⊢ ( ⊤ → Ⅎ 𝑥 𝜑 )
8
6 7
nfand
⊢ ( ⊤ → Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) )
9
4 8
nfabdw
⊢ ( ⊤ → Ⅎ 𝑥 { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) } )
10
9
mptru
⊢ Ⅎ 𝑥 { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) }
11
3 10
nfcxfr
⊢ Ⅎ 𝑥 { 𝑦 ∈ 𝐴 ∣ 𝜑 }