Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Restricted quantification Restricted class abstraction nfrabwOLD  
				
		 
		
			
		 
		Description:   Obsolete version of nfrabw  as of 23-Nov-2024.  (Contributed by NM , 13-Oct-2003)   (Revised by GG , 10-Jan-2024) 
       (New usage is discouraged.)   (Proof modification is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						nfrabw.1 ⊢  Ⅎ 𝑥  𝜑   
					
						nfrabw.2 ⊢  Ⅎ  𝑥  𝐴   
				
					Assertion 
					nfrabwOLD ⊢   Ⅎ  𝑥  { 𝑦   ∈  𝐴   ∣  𝜑  }  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							nfrabw.1 ⊢  Ⅎ 𝑥  𝜑   
						
							2 
								
							 
							nfrabw.2 ⊢  Ⅎ  𝑥  𝐴   
						
							3 
								
							 
							df-rab ⊢  { 𝑦   ∈  𝐴   ∣  𝜑  }  =  { 𝑦   ∣  ( 𝑦   ∈  𝐴   ∧  𝜑  ) }  
						
							4 
								
							 
							nftru ⊢  Ⅎ 𝑦  ⊤  
						
							5 
								2 
							 
							nfcri ⊢  Ⅎ 𝑥  𝑦   ∈  𝐴   
						
							6 
								5 
							 
							a1i ⊢  ( ⊤  →  Ⅎ 𝑥  𝑦   ∈  𝐴  )  
						
							7 
								1 
							 
							a1i ⊢  ( ⊤  →  Ⅎ 𝑥  𝜑  )  
						
							8 
								6  7 
							 
							nfand ⊢  ( ⊤  →  Ⅎ 𝑥  ( 𝑦   ∈  𝐴   ∧  𝜑  ) )  
						
							9 
								4  8 
							 
							nfabdw ⊢  ( ⊤  →  Ⅎ  𝑥  { 𝑦   ∣  ( 𝑦   ∈  𝐴   ∧  𝜑  ) } )  
						
							10 
								9 
							 
							mptru ⊢  Ⅎ  𝑥  { 𝑦   ∣  ( 𝑦   ∈  𝐴   ∧  𝜑  ) }  
						
							11 
								3  10 
							 
							nfcxfr ⊢  Ⅎ  𝑥  { 𝑦   ∈  𝐴   ∣  𝜑  }