Metamath Proof Explorer


Theorem nfne

Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007) (Revised by Mario Carneiro, 7-Oct-2016)

Ref Expression
Hypotheses nfne.1 𝑥 𝐴
nfne.2 𝑥 𝐵
Assertion nfne 𝑥 𝐴𝐵

Proof

Step Hyp Ref Expression
1 nfne.1 𝑥 𝐴
2 nfne.2 𝑥 𝐵
3 df-ne ( 𝐴𝐵 ↔ ¬ 𝐴 = 𝐵 )
4 1 2 nfeq 𝑥 𝐴 = 𝐵
5 4 nfn 𝑥 ¬ 𝐴 = 𝐵
6 3 5 nfxfr 𝑥 𝐴𝐵