Metamath Proof Explorer
Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007) (Revised by Mario Carneiro, 7-Oct-2016)
|
|
Ref |
Expression |
|
Hypotheses |
nfne.1 |
⊢ Ⅎ 𝑥 𝐴 |
|
|
nfne.2 |
⊢ Ⅎ 𝑥 𝐵 |
|
Assertion |
nfne |
⊢ Ⅎ 𝑥 𝐴 ≠ 𝐵 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nfne.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
nfne.2 |
⊢ Ⅎ 𝑥 𝐵 |
3 |
|
df-ne |
⊢ ( 𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵 ) |
4 |
1 2
|
nfeq |
⊢ Ⅎ 𝑥 𝐴 = 𝐵 |
5 |
4
|
nfn |
⊢ Ⅎ 𝑥 ¬ 𝐴 = 𝐵 |
6 |
3 5
|
nfxfr |
⊢ Ⅎ 𝑥 𝐴 ≠ 𝐵 |