Step |
Hyp |
Ref |
Expression |
1 |
|
neeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ↔ 𝑋 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ) ) |
2 |
|
id |
⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) |
3 |
|
predeq3 |
⊢ ( 𝑥 = 𝑋 → Pred ( 𝑅 , 𝐴 , 𝑥 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
4 |
3
|
supeq1d |
⊢ ( 𝑥 = 𝑋 → sup ( Pred ( 𝑅 , 𝐴 , 𝑥 ) , 𝐴 , 𝑅 ) = sup ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) ) |
5 |
2 4
|
eqeq12d |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = sup ( Pred ( 𝑅 , 𝐴 , 𝑥 ) , 𝐴 , 𝑅 ) ↔ 𝑋 = sup ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) ) ) |
6 |
1 5
|
anbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ∧ 𝑥 = sup ( Pred ( 𝑅 , 𝐴 , 𝑥 ) , 𝐴 , 𝑅 ) ) ↔ ( 𝑋 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ∧ 𝑋 = sup ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) ) ) ) |
7 |
|
df-wlim |
⊢ WLim ( 𝑅 , 𝐴 ) = { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ∧ 𝑥 = sup ( Pred ( 𝑅 , 𝐴 , 𝑥 ) , 𝐴 , 𝑅 ) ) } |
8 |
6 7
|
elrab2 |
⊢ ( 𝑋 ∈ WLim ( 𝑅 , 𝐴 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ( 𝑋 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ∧ 𝑋 = sup ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) ) ) ) |
9 |
|
3anass |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ∧ 𝑋 = sup ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) ) ↔ ( 𝑋 ∈ 𝐴 ∧ ( 𝑋 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ∧ 𝑋 = sup ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) ) ) ) |
10 |
8 9
|
bitr4i |
⊢ ( 𝑋 ∈ WLim ( 𝑅 , 𝐴 ) ↔ ( 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ∧ 𝑋 = sup ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) ) ) |