Metamath Proof Explorer


Theorem elwlim

Description: Membership in the limit class. (Contributed by Scott Fenton, 15-Jun-2018) (Revised by AV, 10-Oct-2021)

Ref Expression
Assertion elwlim ( 𝑋 ∈ WLim ( 𝑅 , 𝐴 ) ↔ ( 𝑋𝐴𝑋 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ∧ 𝑋 = sup ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 neeq1 ( 𝑥 = 𝑋 → ( 𝑥 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ↔ 𝑋 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ) )
2 id ( 𝑥 = 𝑋𝑥 = 𝑋 )
3 predeq3 ( 𝑥 = 𝑋 → Pred ( 𝑅 , 𝐴 , 𝑥 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) )
4 3 supeq1d ( 𝑥 = 𝑋 → sup ( Pred ( 𝑅 , 𝐴 , 𝑥 ) , 𝐴 , 𝑅 ) = sup ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) )
5 2 4 eqeq12d ( 𝑥 = 𝑋 → ( 𝑥 = sup ( Pred ( 𝑅 , 𝐴 , 𝑥 ) , 𝐴 , 𝑅 ) ↔ 𝑋 = sup ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) ) )
6 1 5 anbi12d ( 𝑥 = 𝑋 → ( ( 𝑥 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ∧ 𝑥 = sup ( Pred ( 𝑅 , 𝐴 , 𝑥 ) , 𝐴 , 𝑅 ) ) ↔ ( 𝑋 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ∧ 𝑋 = sup ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) ) ) )
7 df-wlim WLim ( 𝑅 , 𝐴 ) = { 𝑥𝐴 ∣ ( 𝑥 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ∧ 𝑥 = sup ( Pred ( 𝑅 , 𝐴 , 𝑥 ) , 𝐴 , 𝑅 ) ) }
8 6 7 elrab2 ( 𝑋 ∈ WLim ( 𝑅 , 𝐴 ) ↔ ( 𝑋𝐴 ∧ ( 𝑋 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ∧ 𝑋 = sup ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) ) ) )
9 3anass ( ( 𝑋𝐴𝑋 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ∧ 𝑋 = sup ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) ) ↔ ( 𝑋𝐴 ∧ ( 𝑋 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ∧ 𝑋 = sup ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) ) ) )
10 8 9 bitr4i ( 𝑋 ∈ WLim ( 𝑅 , 𝐴 ) ↔ ( 𝑋𝐴𝑋 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ∧ 𝑋 = sup ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) ) )