| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neeq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  ≠  inf ( 𝐴 ,  𝐴 ,  𝑅 )  ↔  𝑋  ≠  inf ( 𝐴 ,  𝐴 ,  𝑅 ) ) ) | 
						
							| 2 |  | id | ⊢ ( 𝑥  =  𝑋  →  𝑥  =  𝑋 ) | 
						
							| 3 |  | predeq3 | ⊢ ( 𝑥  =  𝑋  →  Pred ( 𝑅 ,  𝐴 ,  𝑥 )  =  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) | 
						
							| 4 | 3 | supeq1d | ⊢ ( 𝑥  =  𝑋  →  sup ( Pred ( 𝑅 ,  𝐴 ,  𝑥 ) ,  𝐴 ,  𝑅 )  =  sup ( Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ,  𝐴 ,  𝑅 ) ) | 
						
							| 5 | 2 4 | eqeq12d | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  =  sup ( Pred ( 𝑅 ,  𝐴 ,  𝑥 ) ,  𝐴 ,  𝑅 )  ↔  𝑋  =  sup ( Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ,  𝐴 ,  𝑅 ) ) ) | 
						
							| 6 | 1 5 | anbi12d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑥  ≠  inf ( 𝐴 ,  𝐴 ,  𝑅 )  ∧  𝑥  =  sup ( Pred ( 𝑅 ,  𝐴 ,  𝑥 ) ,  𝐴 ,  𝑅 ) )  ↔  ( 𝑋  ≠  inf ( 𝐴 ,  𝐴 ,  𝑅 )  ∧  𝑋  =  sup ( Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ,  𝐴 ,  𝑅 ) ) ) ) | 
						
							| 7 |  | df-wlim | ⊢ WLim ( 𝑅 ,  𝐴 )  =  { 𝑥  ∈  𝐴  ∣  ( 𝑥  ≠  inf ( 𝐴 ,  𝐴 ,  𝑅 )  ∧  𝑥  =  sup ( Pred ( 𝑅 ,  𝐴 ,  𝑥 ) ,  𝐴 ,  𝑅 ) ) } | 
						
							| 8 | 6 7 | elrab2 | ⊢ ( 𝑋  ∈  WLim ( 𝑅 ,  𝐴 )  ↔  ( 𝑋  ∈  𝐴  ∧  ( 𝑋  ≠  inf ( 𝐴 ,  𝐴 ,  𝑅 )  ∧  𝑋  =  sup ( Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ,  𝐴 ,  𝑅 ) ) ) ) | 
						
							| 9 |  | 3anass | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝑋  ≠  inf ( 𝐴 ,  𝐴 ,  𝑅 )  ∧  𝑋  =  sup ( Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ,  𝐴 ,  𝑅 ) )  ↔  ( 𝑋  ∈  𝐴  ∧  ( 𝑋  ≠  inf ( 𝐴 ,  𝐴 ,  𝑅 )  ∧  𝑋  =  sup ( Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ,  𝐴 ,  𝑅 ) ) ) ) | 
						
							| 10 | 8 9 | bitr4i | ⊢ ( 𝑋  ∈  WLim ( 𝑅 ,  𝐴 )  ↔  ( 𝑋  ∈  𝐴  ∧  𝑋  ≠  inf ( 𝐴 ,  𝐴 ,  𝑅 )  ∧  𝑋  =  sup ( Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ,  𝐴 ,  𝑅 ) ) ) |