| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neeq1 |  |-  ( x = X -> ( x =/= inf ( A , A , R ) <-> X =/= inf ( A , A , R ) ) ) | 
						
							| 2 |  | id |  |-  ( x = X -> x = X ) | 
						
							| 3 |  | predeq3 |  |-  ( x = X -> Pred ( R , A , x ) = Pred ( R , A , X ) ) | 
						
							| 4 | 3 | supeq1d |  |-  ( x = X -> sup ( Pred ( R , A , x ) , A , R ) = sup ( Pred ( R , A , X ) , A , R ) ) | 
						
							| 5 | 2 4 | eqeq12d |  |-  ( x = X -> ( x = sup ( Pred ( R , A , x ) , A , R ) <-> X = sup ( Pred ( R , A , X ) , A , R ) ) ) | 
						
							| 6 | 1 5 | anbi12d |  |-  ( x = X -> ( ( x =/= inf ( A , A , R ) /\ x = sup ( Pred ( R , A , x ) , A , R ) ) <-> ( X =/= inf ( A , A , R ) /\ X = sup ( Pred ( R , A , X ) , A , R ) ) ) ) | 
						
							| 7 |  | df-wlim |  |-  WLim ( R , A ) = { x e. A | ( x =/= inf ( A , A , R ) /\ x = sup ( Pred ( R , A , x ) , A , R ) ) } | 
						
							| 8 | 6 7 | elrab2 |  |-  ( X e. WLim ( R , A ) <-> ( X e. A /\ ( X =/= inf ( A , A , R ) /\ X = sup ( Pred ( R , A , X ) , A , R ) ) ) ) | 
						
							| 9 |  | 3anass |  |-  ( ( X e. A /\ X =/= inf ( A , A , R ) /\ X = sup ( Pred ( R , A , X ) , A , R ) ) <-> ( X e. A /\ ( X =/= inf ( A , A , R ) /\ X = sup ( Pred ( R , A , X ) , A , R ) ) ) ) | 
						
							| 10 | 8 9 | bitr4i |  |-  ( X e. WLim ( R , A ) <-> ( X e. A /\ X =/= inf ( A , A , R ) /\ X = sup ( Pred ( R , A , X ) , A , R ) ) ) |