Metamath Proof Explorer


Definition df-wlim

Description: Define the class of limit points of a well-founded set. (Contributed by Scott Fenton, 15-Jun-2018) (Revised by AV, 10-Oct-2021)

Ref Expression
Assertion df-wlim
|- WLim ( R , A ) = { x e. A | ( x =/= inf ( A , A , R ) /\ x = sup ( Pred ( R , A , x ) , A , R ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR
 |-  R
1 cA
 |-  A
2 1 0 cwlim
 |-  WLim ( R , A )
3 vx
 |-  x
4 3 cv
 |-  x
5 1 1 0 cinf
 |-  inf ( A , A , R )
6 4 5 wne
 |-  x =/= inf ( A , A , R )
7 1 0 4 cpred
 |-  Pred ( R , A , x )
8 7 1 0 csup
 |-  sup ( Pred ( R , A , x ) , A , R )
9 4 8 wceq
 |-  x = sup ( Pred ( R , A , x ) , A , R )
10 6 9 wa
 |-  ( x =/= inf ( A , A , R ) /\ x = sup ( Pred ( R , A , x ) , A , R ) )
11 10 3 1 crab
 |-  { x e. A | ( x =/= inf ( A , A , R ) /\ x = sup ( Pred ( R , A , x ) , A , R ) ) }
12 2 11 wceq
 |-  WLim ( R , A ) = { x e. A | ( x =/= inf ( A , A , R ) /\ x = sup ( Pred ( R , A , x ) , A , R ) ) }