| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cR |
|- R |
| 1 |
|
cA |
|- A |
| 2 |
1 0
|
cwlim |
|- WLim ( R , A ) |
| 3 |
|
vx |
|- x |
| 4 |
3
|
cv |
|- x |
| 5 |
1 1 0
|
cinf |
|- inf ( A , A , R ) |
| 6 |
4 5
|
wne |
|- x =/= inf ( A , A , R ) |
| 7 |
1 0 4
|
cpred |
|- Pred ( R , A , x ) |
| 8 |
7 1 0
|
csup |
|- sup ( Pred ( R , A , x ) , A , R ) |
| 9 |
4 8
|
wceq |
|- x = sup ( Pred ( R , A , x ) , A , R ) |
| 10 |
6 9
|
wa |
|- ( x =/= inf ( A , A , R ) /\ x = sup ( Pred ( R , A , x ) , A , R ) ) |
| 11 |
10 3 1
|
crab |
|- { x e. A | ( x =/= inf ( A , A , R ) /\ x = sup ( Pred ( R , A , x ) , A , R ) ) } |
| 12 |
2 11
|
wceq |
|- WLim ( R , A ) = { x e. A | ( x =/= inf ( A , A , R ) /\ x = sup ( Pred ( R , A , x ) , A , R ) ) } |