| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cR |  |-  R | 
						
							| 1 |  | cA |  |-  A | 
						
							| 2 | 1 0 | cwlim |  |-  WLim ( R , A ) | 
						
							| 3 |  | vx |  |-  x | 
						
							| 4 | 3 | cv |  |-  x | 
						
							| 5 | 1 1 0 | cinf |  |-  inf ( A , A , R ) | 
						
							| 6 | 4 5 | wne |  |-  x =/= inf ( A , A , R ) | 
						
							| 7 | 1 0 4 | cpred |  |-  Pred ( R , A , x ) | 
						
							| 8 | 7 1 0 | csup |  |-  sup ( Pred ( R , A , x ) , A , R ) | 
						
							| 9 | 4 8 | wceq |  |-  x = sup ( Pred ( R , A , x ) , A , R ) | 
						
							| 10 | 6 9 | wa |  |-  ( x =/= inf ( A , A , R ) /\ x = sup ( Pred ( R , A , x ) , A , R ) ) | 
						
							| 11 | 10 3 1 | crab |  |-  { x e. A | ( x =/= inf ( A , A , R ) /\ x = sup ( Pred ( R , A , x ) , A , R ) ) } | 
						
							| 12 | 2 11 | wceq |  |-  WLim ( R , A ) = { x e. A | ( x =/= inf ( A , A , R ) /\ x = sup ( Pred ( R , A , x ) , A , R ) ) } |