Metamath Proof Explorer


Definition df-wlim

Description: Define the class of limit points of a well-founded set. (Contributed by Scott Fenton, 15-Jun-2018) (Revised by AV, 10-Oct-2021)

Ref Expression
Assertion df-wlim WLim R A = x A | x sup A A R x = sup Pred R A x A R

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR class R
1 cA class A
2 1 0 cwlim class WLim R A
3 vx setvar x
4 3 cv setvar x
5 1 1 0 cinf class sup A A R
6 4 5 wne wff x sup A A R
7 1 0 4 cpred class Pred R A x
8 7 1 0 csup class sup Pred R A x A R
9 4 8 wceq wff x = sup Pred R A x A R
10 6 9 wa wff x sup A A R x = sup Pred R A x A R
11 10 3 1 crab class x A | x sup A A R x = sup Pred R A x A R
12 2 11 wceq wff WLim R A = x A | x sup A A R x = sup Pred R A x A R