Metamath Proof Explorer


Definition df-wlim

Description: Define the class of limit points of a well-founded set. (Contributed by Scott Fenton, 15-Jun-2018) (Revised by AV, 10-Oct-2021)

Ref Expression
Assertion df-wlim WLimRA=xA|xsupAARx=supPredRAxAR

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR classR
1 cA classA
2 1 0 cwlim classWLimRA
3 vx setvarx
4 3 cv setvarx
5 1 1 0 cinf classsupAAR
6 4 5 wne wffxsupAAR
7 1 0 4 cpred classPredRAx
8 7 1 0 csup classsupPredRAxAR
9 4 8 wceq wffx=supPredRAxAR
10 6 9 wa wffxsupAARx=supPredRAxAR
11 10 3 1 crab classxA|xsupAARx=supPredRAxAR
12 2 11 wceq wffWLimRA=xA|xsupAARx=supPredRAxAR