| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cR | ⊢ 𝑅 | 
						
							| 1 |  | cA | ⊢ 𝐴 | 
						
							| 2 | 1 0 | cwlim | ⊢ WLim ( 𝑅 ,  𝐴 ) | 
						
							| 3 |  | vx | ⊢ 𝑥 | 
						
							| 4 | 3 | cv | ⊢ 𝑥 | 
						
							| 5 | 1 1 0 | cinf | ⊢ inf ( 𝐴 ,  𝐴 ,  𝑅 ) | 
						
							| 6 | 4 5 | wne | ⊢ 𝑥  ≠  inf ( 𝐴 ,  𝐴 ,  𝑅 ) | 
						
							| 7 | 1 0 4 | cpred | ⊢ Pred ( 𝑅 ,  𝐴 ,  𝑥 ) | 
						
							| 8 | 7 1 0 | csup | ⊢ sup ( Pred ( 𝑅 ,  𝐴 ,  𝑥 ) ,  𝐴 ,  𝑅 ) | 
						
							| 9 | 4 8 | wceq | ⊢ 𝑥  =  sup ( Pred ( 𝑅 ,  𝐴 ,  𝑥 ) ,  𝐴 ,  𝑅 ) | 
						
							| 10 | 6 9 | wa | ⊢ ( 𝑥  ≠  inf ( 𝐴 ,  𝐴 ,  𝑅 )  ∧  𝑥  =  sup ( Pred ( 𝑅 ,  𝐴 ,  𝑥 ) ,  𝐴 ,  𝑅 ) ) | 
						
							| 11 | 10 3 1 | crab | ⊢ { 𝑥  ∈  𝐴  ∣  ( 𝑥  ≠  inf ( 𝐴 ,  𝐴 ,  𝑅 )  ∧  𝑥  =  sup ( Pred ( 𝑅 ,  𝐴 ,  𝑥 ) ,  𝐴 ,  𝑅 ) ) } | 
						
							| 12 | 2 11 | wceq | ⊢ WLim ( 𝑅 ,  𝐴 )  =  { 𝑥  ∈  𝐴  ∣  ( 𝑥  ≠  inf ( 𝐴 ,  𝐴 ,  𝑅 )  ∧  𝑥  =  sup ( Pred ( 𝑅 ,  𝐴 ,  𝑥 ) ,  𝐴 ,  𝑅 ) ) } |