Step |
Hyp |
Ref |
Expression |
0 |
|
cR |
⊢ 𝑅 |
1 |
|
cA |
⊢ 𝐴 |
2 |
1 0
|
cwlim |
⊢ WLim ( 𝑅 , 𝐴 ) |
3 |
|
vx |
⊢ 𝑥 |
4 |
3
|
cv |
⊢ 𝑥 |
5 |
1 1 0
|
cinf |
⊢ inf ( 𝐴 , 𝐴 , 𝑅 ) |
6 |
4 5
|
wne |
⊢ 𝑥 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) |
7 |
1 0 4
|
cpred |
⊢ Pred ( 𝑅 , 𝐴 , 𝑥 ) |
8 |
7 1 0
|
csup |
⊢ sup ( Pred ( 𝑅 , 𝐴 , 𝑥 ) , 𝐴 , 𝑅 ) |
9 |
4 8
|
wceq |
⊢ 𝑥 = sup ( Pred ( 𝑅 , 𝐴 , 𝑥 ) , 𝐴 , 𝑅 ) |
10 |
6 9
|
wa |
⊢ ( 𝑥 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ∧ 𝑥 = sup ( Pred ( 𝑅 , 𝐴 , 𝑥 ) , 𝐴 , 𝑅 ) ) |
11 |
10 3 1
|
crab |
⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ∧ 𝑥 = sup ( Pred ( 𝑅 , 𝐴 , 𝑥 ) , 𝐴 , 𝑅 ) ) } |
12 |
2 11
|
wceq |
⊢ WLim ( 𝑅 , 𝐴 ) = { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ∧ 𝑥 = sup ( Pred ( 𝑅 , 𝐴 , 𝑥 ) , 𝐴 , 𝑅 ) ) } |