Metamath Proof Explorer


Theorem wsuceq123

Description: Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018) (Proof shortened by AV, 10-Oct-2021)

Ref Expression
Assertion wsuceq123 ( ( 𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌 ) → wsuc ( 𝑅 , 𝐴 , 𝑋 ) = wsuc ( 𝑆 , 𝐵 , 𝑌 ) )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌 ) → 𝑅 = 𝑆 )
2 1 cnveqd ( ( 𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌 ) → 𝑅 = 𝑆 )
3 predeq123 ( ( 𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑆 , 𝐵 , 𝑌 ) )
4 2 3 syld3an1 ( ( 𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑆 , 𝐵 , 𝑌 ) )
5 simp2 ( ( 𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌 ) → 𝐴 = 𝐵 )
6 4 5 1 infeq123d ( ( 𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌 ) → inf ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) = inf ( Pred ( 𝑆 , 𝐵 , 𝑌 ) , 𝐵 , 𝑆 ) )
7 df-wsuc wsuc ( 𝑅 , 𝐴 , 𝑋 ) = inf ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 )
8 df-wsuc wsuc ( 𝑆 , 𝐵 , 𝑌 ) = inf ( Pred ( 𝑆 , 𝐵 , 𝑌 ) , 𝐵 , 𝑆 )
9 6 7 8 3eqtr4g ( ( 𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌 ) → wsuc ( 𝑅 , 𝐴 , 𝑋 ) = wsuc ( 𝑆 , 𝐵 , 𝑌 ) )