Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌 ) → 𝑅 = 𝑆 ) |
2 |
1
|
cnveqd |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌 ) → ◡ 𝑅 = ◡ 𝑆 ) |
3 |
|
predeq123 |
⊢ ( ( ◡ 𝑅 = ◡ 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌 ) → Pred ( ◡ 𝑅 , 𝐴 , 𝑋 ) = Pred ( ◡ 𝑆 , 𝐵 , 𝑌 ) ) |
4 |
2 3
|
syld3an1 |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌 ) → Pred ( ◡ 𝑅 , 𝐴 , 𝑋 ) = Pred ( ◡ 𝑆 , 𝐵 , 𝑌 ) ) |
5 |
|
simp2 |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌 ) → 𝐴 = 𝐵 ) |
6 |
4 5 1
|
infeq123d |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌 ) → inf ( Pred ( ◡ 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) = inf ( Pred ( ◡ 𝑆 , 𝐵 , 𝑌 ) , 𝐵 , 𝑆 ) ) |
7 |
|
df-wsuc |
⊢ wsuc ( 𝑅 , 𝐴 , 𝑋 ) = inf ( Pred ( ◡ 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) |
8 |
|
df-wsuc |
⊢ wsuc ( 𝑆 , 𝐵 , 𝑌 ) = inf ( Pred ( ◡ 𝑆 , 𝐵 , 𝑌 ) , 𝐵 , 𝑆 ) |
9 |
6 7 8
|
3eqtr4g |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌 ) → wsuc ( 𝑅 , 𝐴 , 𝑋 ) = wsuc ( 𝑆 , 𝐵 , 𝑌 ) ) |