Metamath Proof Explorer


Theorem wsuceq1

Description: Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018)

Ref Expression
Assertion wsuceq1 ( 𝑅 = 𝑆 → wsuc ( 𝑅 , 𝐴 , 𝑋 ) = wsuc ( 𝑆 , 𝐴 , 𝑋 ) )

Proof

Step Hyp Ref Expression
1 eqid 𝐴 = 𝐴
2 eqid 𝑋 = 𝑋
3 wsuceq123 ( ( 𝑅 = 𝑆𝐴 = 𝐴𝑋 = 𝑋 ) → wsuc ( 𝑅 , 𝐴 , 𝑋 ) = wsuc ( 𝑆 , 𝐴 , 𝑋 ) )
4 1 2 3 mp3an23 ( 𝑅 = 𝑆 → wsuc ( 𝑅 , 𝐴 , 𝑋 ) = wsuc ( 𝑆 , 𝐴 , 𝑋 ) )