Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( R = S /\ A = B /\ X = Y ) -> R = S ) |
2 |
1
|
cnveqd |
|- ( ( R = S /\ A = B /\ X = Y ) -> `' R = `' S ) |
3 |
|
predeq123 |
|- ( ( `' R = `' S /\ A = B /\ X = Y ) -> Pred ( `' R , A , X ) = Pred ( `' S , B , Y ) ) |
4 |
2 3
|
syld3an1 |
|- ( ( R = S /\ A = B /\ X = Y ) -> Pred ( `' R , A , X ) = Pred ( `' S , B , Y ) ) |
5 |
|
simp2 |
|- ( ( R = S /\ A = B /\ X = Y ) -> A = B ) |
6 |
4 5 1
|
infeq123d |
|- ( ( R = S /\ A = B /\ X = Y ) -> inf ( Pred ( `' R , A , X ) , A , R ) = inf ( Pred ( `' S , B , Y ) , B , S ) ) |
7 |
|
df-wsuc |
|- wsuc ( R , A , X ) = inf ( Pred ( `' R , A , X ) , A , R ) |
8 |
|
df-wsuc |
|- wsuc ( S , B , Y ) = inf ( Pred ( `' S , B , Y ) , B , S ) |
9 |
6 7 8
|
3eqtr4g |
|- ( ( R = S /\ A = B /\ X = Y ) -> wsuc ( R , A , X ) = wsuc ( S , B , Y ) ) |