Metamath Proof Explorer


Definition df-wsuc

Description: Define the concept of a successor in a well-founded set. (Contributed by Scott Fenton, 13-Jun-2018) (Revised by AV, 10-Oct-2021)

Ref Expression
Assertion df-wsuc wsuc ( 𝑅 , 𝐴 , 𝑋 ) = inf ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR 𝑅
1 cA 𝐴
2 cX 𝑋
3 1 0 2 cwsuc wsuc ( 𝑅 , 𝐴 , 𝑋 )
4 0 ccnv 𝑅
5 1 4 2 cpred Pred ( 𝑅 , 𝐴 , 𝑋 )
6 5 1 0 cinf inf ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 )
7 3 6 wceq wsuc ( 𝑅 , 𝐴 , 𝑋 ) = inf ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 )