Metamath Proof Explorer


Definition df-wsuc

Description: Define the concept of a successor in a well-founded set. (Contributed by Scott Fenton, 13-Jun-2018) (Revised by AV, 10-Oct-2021)

Ref Expression
Assertion df-wsuc wsucRAX=supPredR-1AXAR

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR classR
1 cA classA
2 cX classX
3 1 0 2 cwsuc classwsucRAX
4 0 ccnv classR-1
5 1 4 2 cpred classPredR-1AX
6 5 1 0 cinf classsupPredR-1AXAR
7 3 6 wceq wffwsucRAX=supPredR-1AXAR