| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfwlim.1 |  |-  F/_ x R | 
						
							| 2 |  | nfwlim.2 |  |-  F/_ x A | 
						
							| 3 |  | df-wlim |  |-  WLim ( R , A ) = { y e. A | ( y =/= inf ( A , A , R ) /\ y = sup ( Pred ( R , A , y ) , A , R ) ) } | 
						
							| 4 |  | nfcv |  |-  F/_ x y | 
						
							| 5 | 2 2 1 | nfinf |  |-  F/_ x inf ( A , A , R ) | 
						
							| 6 | 4 5 | nfne |  |-  F/ x y =/= inf ( A , A , R ) | 
						
							| 7 | 1 2 4 | nfpred |  |-  F/_ x Pred ( R , A , y ) | 
						
							| 8 | 7 2 1 | nfsup |  |-  F/_ x sup ( Pred ( R , A , y ) , A , R ) | 
						
							| 9 | 8 | nfeq2 |  |-  F/ x y = sup ( Pred ( R , A , y ) , A , R ) | 
						
							| 10 | 6 9 | nfan |  |-  F/ x ( y =/= inf ( A , A , R ) /\ y = sup ( Pred ( R , A , y ) , A , R ) ) | 
						
							| 11 | 10 2 | nfrabw |  |-  F/_ x { y e. A | ( y =/= inf ( A , A , R ) /\ y = sup ( Pred ( R , A , y ) , A , R ) ) } | 
						
							| 12 | 3 11 | nfcxfr |  |-  F/_ x WLim ( R , A ) |