Step |
Hyp |
Ref |
Expression |
1 |
|
nfwlim.1 |
|- F/_ x R |
2 |
|
nfwlim.2 |
|- F/_ x A |
3 |
|
df-wlim |
|- WLim ( R , A ) = { y e. A | ( y =/= inf ( A , A , R ) /\ y = sup ( Pred ( R , A , y ) , A , R ) ) } |
4 |
|
nfcv |
|- F/_ x y |
5 |
2 2 1
|
nfinf |
|- F/_ x inf ( A , A , R ) |
6 |
4 5
|
nfne |
|- F/ x y =/= inf ( A , A , R ) |
7 |
1 2 4
|
nfpred |
|- F/_ x Pred ( R , A , y ) |
8 |
7 2 1
|
nfsup |
|- F/_ x sup ( Pred ( R , A , y ) , A , R ) |
9 |
8
|
nfeq2 |
|- F/ x y = sup ( Pred ( R , A , y ) , A , R ) |
10 |
6 9
|
nfan |
|- F/ x ( y =/= inf ( A , A , R ) /\ y = sup ( Pred ( R , A , y ) , A , R ) ) |
11 |
10 2
|
nfrabw |
|- F/_ x { y e. A | ( y =/= inf ( A , A , R ) /\ y = sup ( Pred ( R , A , y ) , A , R ) ) } |
12 |
3 11
|
nfcxfr |
|- F/_ x WLim ( R , A ) |