Metamath Proof Explorer


Theorem nfwlim

Description: Bound-variable hypothesis builder for the limit class. (Contributed by Scott Fenton, 15-Jun-2018) (Proof shortened by AV, 10-Oct-2021)

Ref Expression
Hypotheses nfwlim.1
|- F/_ x R
nfwlim.2
|- F/_ x A
Assertion nfwlim
|- F/_ x WLim ( R , A )

Proof

Step Hyp Ref Expression
1 nfwlim.1
 |-  F/_ x R
2 nfwlim.2
 |-  F/_ x A
3 df-wlim
 |-  WLim ( R , A ) = { y e. A | ( y =/= inf ( A , A , R ) /\ y = sup ( Pred ( R , A , y ) , A , R ) ) }
4 nfcv
 |-  F/_ x y
5 2 2 1 nfinf
 |-  F/_ x inf ( A , A , R )
6 4 5 nfne
 |-  F/ x y =/= inf ( A , A , R )
7 1 2 4 nfpred
 |-  F/_ x Pred ( R , A , y )
8 7 2 1 nfsup
 |-  F/_ x sup ( Pred ( R , A , y ) , A , R )
9 8 nfeq2
 |-  F/ x y = sup ( Pred ( R , A , y ) , A , R )
10 6 9 nfan
 |-  F/ x ( y =/= inf ( A , A , R ) /\ y = sup ( Pred ( R , A , y ) , A , R ) )
11 10 2 nfrabw
 |-  F/_ x { y e. A | ( y =/= inf ( A , A , R ) /\ y = sup ( Pred ( R , A , y ) , A , R ) ) }
12 3 11 nfcxfr
 |-  F/_ x WLim ( R , A )