Description: Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wlimeq2 | |- ( A = B -> WLim ( R , A ) = WLim ( R , B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | |- R = R | |
| 2 | wlimeq12 | |- ( ( R = R /\ A = B ) -> WLim ( R , A ) = WLim ( R , B ) ) | |
| 3 | 1 2 | mpan | |- ( A = B -> WLim ( R , A ) = WLim ( R , B ) ) |