Description: Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | wlimeq2 | |- ( A = B -> WLim ( R , A ) = WLim ( R , B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- R = R |
|
2 | wlimeq12 | |- ( ( R = R /\ A = B ) -> WLim ( R , A ) = WLim ( R , B ) ) |
|
3 | 1 2 | mpan | |- ( A = B -> WLim ( R , A ) = WLim ( R , B ) ) |