Description: Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wlimeq1 | |- ( R = S -> WLim ( R , A ) = WLim ( S , A ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | |- A = A | |
| 2 | wlimeq12 | |- ( ( R = S /\ A = A ) -> WLim ( R , A ) = WLim ( S , A ) ) | |
| 3 | 1 2 | mpan2 | |- ( R = S -> WLim ( R , A ) = WLim ( S , A ) ) |