Description: Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | wlimeq1 | |- ( R = S -> WLim ( R , A ) = WLim ( S , A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- A = A |
|
2 | wlimeq12 | |- ( ( R = S /\ A = A ) -> WLim ( R , A ) = WLim ( S , A ) ) |
|
3 | 1 2 | mpan2 | |- ( R = S -> WLim ( R , A ) = WLim ( S , A ) ) |