Metamath Proof Explorer


Theorem xnegnegi

Description: Extended real version of negneg . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis xnegnegi.1 A*
Assertion xnegnegi A=A

Proof

Step Hyp Ref Expression
1 xnegnegi.1 A*
2 xnegneg A*A=A
3 1 2 ax-mp A=A