Metamath Proof Explorer


Theorem xorneg2

Description: The connector \/_ is negated under negation of one argument. (Contributed by Mario Carneiro, 4-Sep-2016) (Proof shortened by Wolf Lammen, 27-Jun-2020)

Ref Expression
Assertion xorneg2 φ¬ψ¬φψ

Proof

Step Hyp Ref Expression
1 df-xor φ¬ψ¬φ¬ψ
2 pm5.18 φψ¬φ¬ψ
3 xnor φψ¬φψ
4 1 2 3 3bitr2i φ¬ψ¬φψ