Metamath Proof Explorer


Theorem xp2

Description: Representation of Cartesian product based on ordered pair component functions. (Contributed by NM, 16-Sep-2006)

Ref Expression
Assertion xp2 A×B=xV×V|1stxA2ndxB

Proof

Step Hyp Ref Expression
1 elxp7 xA×BxV×V1stxA2ndxB
2 1 eqabi A×B=x|xV×V1stxA2ndxB
3 df-rab xV×V|1stxA2ndxB=x|xV×V1stxA2ndxB
4 2 3 eqtr4i A×B=xV×V|1stxA2ndxB