Metamath Proof Explorer


Theorem xpdom1g

Description: Dominance law for Cartesian product. Theorem 6L(c) of Enderton p. 149. (Contributed by NM, 25-Mar-2006) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion xpdom1g CVABA×CB×C

Proof

Step Hyp Ref Expression
1 reldom Rel
2 1 brrelex1i ABAV
3 xpcomeng AVCVA×CC×A
4 3 ancoms CVAVA×CC×A
5 2 4 sylan2 CVABA×CC×A
6 xpdom2g CVABC×AC×B
7 1 brrelex2i ABBV
8 xpcomeng CVBVC×BB×C
9 7 8 sylan2 CVABC×BB×C
10 domentr C×AC×BC×BB×CC×AB×C
11 6 9 10 syl2anc CVABC×AB×C
12 endomtr A×CC×AC×AB×CA×CB×C
13 5 11 12 syl2anc CVABA×CB×C