Metamath Proof Explorer


Theorem zfrep3cl

Description: An inference based on the Axiom of Replacement. Typically, ph defines a function from x to y . (Contributed by NM, 26-Nov-1995)

Ref Expression
Hypotheses zfrep3cl.1 AV
zfrep3cl.2 xAzyφy=z
Assertion zfrep3cl zyyzxxAφ

Proof

Step Hyp Ref Expression
1 zfrep3cl.1 AV
2 zfrep3cl.2 xAzyφy=z
3 nfcv _xA
4 3 1 2 zfrepclf zyyzxxAφ