Metamath Proof Explorer


Theorem zfrepclf

Description: An inference based on the Axiom of Replacement. Typically, ph defines a function from x to y . (Contributed by NM, 26-Nov-1995)

Ref Expression
Hypotheses zfrepclf.1 _xA
zfrepclf.2 AV
zfrepclf.3 xAzyφy=z
Assertion zfrepclf zyyzxxAφ

Proof

Step Hyp Ref Expression
1 zfrepclf.1 _xA
2 zfrepclf.2 AV
3 zfrepclf.3 xAzyφy=z
4 1 nfeq2 xv=A
5 eleq2 v=AxvxA
6 5 3 syl6bi v=Axvzyφy=z
7 4 6 alrimi v=Axxvzyφy=z
8 nfv zφ
9 8 axrep5 xxvzyφy=zzyyzxxvφ
10 7 9 syl v=Azyyzxxvφ
11 5 anbi1d v=AxvφxAφ
12 4 11 exbid v=AxxvφxxAφ
13 12 bibi2d v=AyzxxvφyzxxAφ
14 13 albidv v=AyyzxxvφyyzxxAφ
15 14 exbidv v=AzyyzxxvφzyyzxxAφ
16 10 15 mpbid v=AzyyzxxAφ
17 2 16 vtocle zyyzxxAφ