Metamath Proof Explorer


Theorem axrep5

Description: Axiom of Replacement (similar to Axiom Rep of BellMachover p. 463). The antecedent tells us ph is analogous to a "function" from x to y (although it is not really a function since it is a wff and not a class). In the consequent we postulate the existence of a set z that corresponds to the "image" of ph restricted to some other set w . The hypothesis says z must not be free in ph . (Contributed by NM, 26-Nov-1995) (Revised by Mario Carneiro, 14-Oct-2016)

Ref Expression
Hypothesis axrep5.1 zφ
Assertion axrep5 xxwzyφy=zzyyzxxwφ

Proof

Step Hyp Ref Expression
1 axrep5.1 zφ
2 19.37v zxwyφy=zxwzyφy=z
3 impexp xwφy=zxwφy=z
4 3 albii yxwφy=zyxwφy=z
5 19.21v yxwφy=zxwyφy=z
6 4 5 bitr2i xwyφy=zyxwφy=z
7 6 exbii zxwyφy=zzyxwφy=z
8 2 7 bitr3i xwzyφy=zzyxwφy=z
9 8 albii xxwzyφy=zxzyxwφy=z
10 nfv zxw
11 10 1 nfan zxwφ
12 11 axrep4 xzyxwφy=zzyyzxxwxwφ
13 9 12 sylbi xxwzyφy=zzyyzxxwxwφ
14 anabs5 xwxwφxwφ
15 14 exbii xxwxwφxxwφ
16 15 bibi2i yzxxwxwφyzxxwφ
17 16 albii yyzxxwxwφyyzxxwφ
18 17 exbii zyyzxxwxwφzyyzxxwφ
19 13 18 sylib xxwzyφy=zzyyzxxwφ