| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axrep5.1 | ⊢ Ⅎ 𝑧 𝜑 | 
						
							| 2 |  | 19.37v | ⊢ ( ∃ 𝑧 ( 𝑥  ∈  𝑤  →  ∀ 𝑦 ( 𝜑  →  𝑦  =  𝑧 ) )  ↔  ( 𝑥  ∈  𝑤  →  ∃ 𝑧 ∀ 𝑦 ( 𝜑  →  𝑦  =  𝑧 ) ) ) | 
						
							| 3 |  | impexp | ⊢ ( ( ( 𝑥  ∈  𝑤  ∧  𝜑 )  →  𝑦  =  𝑧 )  ↔  ( 𝑥  ∈  𝑤  →  ( 𝜑  →  𝑦  =  𝑧 ) ) ) | 
						
							| 4 | 3 | albii | ⊢ ( ∀ 𝑦 ( ( 𝑥  ∈  𝑤  ∧  𝜑 )  →  𝑦  =  𝑧 )  ↔  ∀ 𝑦 ( 𝑥  ∈  𝑤  →  ( 𝜑  →  𝑦  =  𝑧 ) ) ) | 
						
							| 5 |  | 19.21v | ⊢ ( ∀ 𝑦 ( 𝑥  ∈  𝑤  →  ( 𝜑  →  𝑦  =  𝑧 ) )  ↔  ( 𝑥  ∈  𝑤  →  ∀ 𝑦 ( 𝜑  →  𝑦  =  𝑧 ) ) ) | 
						
							| 6 | 4 5 | bitr2i | ⊢ ( ( 𝑥  ∈  𝑤  →  ∀ 𝑦 ( 𝜑  →  𝑦  =  𝑧 ) )  ↔  ∀ 𝑦 ( ( 𝑥  ∈  𝑤  ∧  𝜑 )  →  𝑦  =  𝑧 ) ) | 
						
							| 7 | 6 | exbii | ⊢ ( ∃ 𝑧 ( 𝑥  ∈  𝑤  →  ∀ 𝑦 ( 𝜑  →  𝑦  =  𝑧 ) )  ↔  ∃ 𝑧 ∀ 𝑦 ( ( 𝑥  ∈  𝑤  ∧  𝜑 )  →  𝑦  =  𝑧 ) ) | 
						
							| 8 | 2 7 | bitr3i | ⊢ ( ( 𝑥  ∈  𝑤  →  ∃ 𝑧 ∀ 𝑦 ( 𝜑  →  𝑦  =  𝑧 ) )  ↔  ∃ 𝑧 ∀ 𝑦 ( ( 𝑥  ∈  𝑤  ∧  𝜑 )  →  𝑦  =  𝑧 ) ) | 
						
							| 9 | 8 | albii | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝑤  →  ∃ 𝑧 ∀ 𝑦 ( 𝜑  →  𝑦  =  𝑧 ) )  ↔  ∀ 𝑥 ∃ 𝑧 ∀ 𝑦 ( ( 𝑥  ∈  𝑤  ∧  𝜑 )  →  𝑦  =  𝑧 ) ) | 
						
							| 10 |  | nfv | ⊢ Ⅎ 𝑧 𝑥  ∈  𝑤 | 
						
							| 11 | 10 1 | nfan | ⊢ Ⅎ 𝑧 ( 𝑥  ∈  𝑤  ∧  𝜑 ) | 
						
							| 12 | 11 | axrep4 | ⊢ ( ∀ 𝑥 ∃ 𝑧 ∀ 𝑦 ( ( 𝑥  ∈  𝑤  ∧  𝜑 )  →  𝑦  =  𝑧 )  →  ∃ 𝑧 ∀ 𝑦 ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  ( 𝑥  ∈  𝑤  ∧  𝜑 ) ) ) ) | 
						
							| 13 | 9 12 | sylbi | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝑤  →  ∃ 𝑧 ∀ 𝑦 ( 𝜑  →  𝑦  =  𝑧 ) )  →  ∃ 𝑧 ∀ 𝑦 ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  ( 𝑥  ∈  𝑤  ∧  𝜑 ) ) ) ) | 
						
							| 14 |  | anabs5 | ⊢ ( ( 𝑥  ∈  𝑤  ∧  ( 𝑥  ∈  𝑤  ∧  𝜑 ) )  ↔  ( 𝑥  ∈  𝑤  ∧  𝜑 ) ) | 
						
							| 15 | 14 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  ( 𝑥  ∈  𝑤  ∧  𝜑 ) )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  𝜑 ) ) | 
						
							| 16 | 15 | bibi2i | ⊢ ( ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  ( 𝑥  ∈  𝑤  ∧  𝜑 ) ) )  ↔  ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  𝜑 ) ) ) | 
						
							| 17 | 16 | albii | ⊢ ( ∀ 𝑦 ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  ( 𝑥  ∈  𝑤  ∧  𝜑 ) ) )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  𝜑 ) ) ) | 
						
							| 18 | 17 | exbii | ⊢ ( ∃ 𝑧 ∀ 𝑦 ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  ( 𝑥  ∈  𝑤  ∧  𝜑 ) ) )  ↔  ∃ 𝑧 ∀ 𝑦 ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  𝜑 ) ) ) | 
						
							| 19 | 13 18 | sylib | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝑤  →  ∃ 𝑧 ∀ 𝑦 ( 𝜑  →  𝑦  =  𝑧 ) )  →  ∃ 𝑧 ∀ 𝑦 ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  𝜑 ) ) ) |