| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zfrepclf.1 | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 2 |  | zfrepclf.2 | ⊢ 𝐴  ∈  V | 
						
							| 3 |  | zfrepclf.3 | ⊢ ( 𝑥  ∈  𝐴  →  ∃ 𝑧 ∀ 𝑦 ( 𝜑  →  𝑦  =  𝑧 ) ) | 
						
							| 4 | 1 | nfeq2 | ⊢ Ⅎ 𝑥 𝑣  =  𝐴 | 
						
							| 5 |  | eleq2 | ⊢ ( 𝑣  =  𝐴  →  ( 𝑥  ∈  𝑣  ↔  𝑥  ∈  𝐴 ) ) | 
						
							| 6 | 5 3 | biimtrdi | ⊢ ( 𝑣  =  𝐴  →  ( 𝑥  ∈  𝑣  →  ∃ 𝑧 ∀ 𝑦 ( 𝜑  →  𝑦  =  𝑧 ) ) ) | 
						
							| 7 | 4 6 | alrimi | ⊢ ( 𝑣  =  𝐴  →  ∀ 𝑥 ( 𝑥  ∈  𝑣  →  ∃ 𝑧 ∀ 𝑦 ( 𝜑  →  𝑦  =  𝑧 ) ) ) | 
						
							| 8 |  | nfv | ⊢ Ⅎ 𝑧 𝜑 | 
						
							| 9 | 8 | axrep5 | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝑣  →  ∃ 𝑧 ∀ 𝑦 ( 𝜑  →  𝑦  =  𝑧 ) )  →  ∃ 𝑧 ∀ 𝑦 ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑣  ∧  𝜑 ) ) ) | 
						
							| 10 | 7 9 | syl | ⊢ ( 𝑣  =  𝐴  →  ∃ 𝑧 ∀ 𝑦 ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑣  ∧  𝜑 ) ) ) | 
						
							| 11 | 5 | anbi1d | ⊢ ( 𝑣  =  𝐴  →  ( ( 𝑥  ∈  𝑣  ∧  𝜑 )  ↔  ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) ) | 
						
							| 12 | 4 11 | exbid | ⊢ ( 𝑣  =  𝐴  →  ( ∃ 𝑥 ( 𝑥  ∈  𝑣  ∧  𝜑 )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) ) | 
						
							| 13 | 12 | bibi2d | ⊢ ( 𝑣  =  𝐴  →  ( ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑣  ∧  𝜑 ) )  ↔  ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) ) ) | 
						
							| 14 | 13 | albidv | ⊢ ( 𝑣  =  𝐴  →  ( ∀ 𝑦 ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑣  ∧  𝜑 ) )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) ) ) | 
						
							| 15 | 14 | exbidv | ⊢ ( 𝑣  =  𝐴  →  ( ∃ 𝑧 ∀ 𝑦 ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑣  ∧  𝜑 ) )  ↔  ∃ 𝑧 ∀ 𝑦 ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) ) ) | 
						
							| 16 | 10 15 | mpbid | ⊢ ( 𝑣  =  𝐴  →  ∃ 𝑧 ∀ 𝑦 ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) ) | 
						
							| 17 | 2 16 | vtocle | ⊢ ∃ 𝑧 ∀ 𝑦 ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) |